

Reaccredited 'A+ 'Grade by NAAC(CGPA:3.68/4.00)
College with Potential for Excellence by UGC
DST-FIST Supported & STAR College Scheme by DBT

Department of Physics

UG I Semester MECHANICAL WORKSHOP SKILL

Course Outcomes

CO N				
CO. No.	Course Outcomes	Cognitive		
		Level		
CO 1	Learner will Understand ancient Indian measuring systems and Kanad's laws of motion.	U		
CO 2	Learn modern measurement techniques and unit conversions.	An, Ap		
CO 3	Learner will Understand vector fields, and vector differentiation (gradient, divergence, curl).	U, C		
CO 4	Learner will be able to Explore surface tension, viscosity, and fluid flow equations (Bernoulli's theorem).	E, AP		
CO 5	Learner will be able to Develop practical skills in workshop practices and machine tool operations.	С		

Reaccredited 'A+ 'Grade by NAAC(CGPA:3.68/4.00)
College with Potential for Excellence by UGC
DST-FIST Supported & STAR College Scheme by DBT

Content of the Course Theory (Credit: 3)

Total No. of Lectures: 45 Hrs. Maximum Marks: 100

Unit	Topic	Lectures
I	Historical background and Measuring system	9
	1. Historical background: Ancient Indian units of time as mentioned in	
	the Shrimad Bhagavat Purana, Dongla observatory, Kanad's laws of motion.	
	2. Measuring system: Measuring units, Conversion to SI and CGS,	
	Familiarization with meter scale, Vernier calipers, Screw gauge and	
	their utility, Measure the dimension of a solid block, Volume of	
	cylindrical beaker/glass, Diameter of a thin wire, Thickness of metal	
	sheet, Use of Sextant to measure height.	
	Activities	
	1. Measure the external diameter of a pen using a Screw gauge.	
	2. Measure the volume of a metal cylinder using Vernier callipers.	
	Keywords/Tags: Ancient time units, Kanad's laws. Vernier callipers,	
	screw gauge.	
II	Mathematical Tools and Vectors	9
	1. Plotting of functions, Approximations: Taylor and binomial series	
	(statements only), Fundamental concepts of Limit, Continuity and	
	Differentiability, Basic Integration Formulas, Integration by parts,	
	Integration by partial fraction, Integration by trigonometric functions.	
	2. Vector Algebra: Properties of vectors, Scalar product and vector	
	product, Scalar and Vector fields, Vector Differentiation, Gradient of a	
	scalar field and its geometrical interpretation, Divergence and curl of a	
	vector field, Del and Laplacian operators.	
	Activities:	
	1. Ask students to sketch graphs of some trigonometric functions.	
	2. To compute the limit of the given functions at specific points and	
	determine their continuity using graphical method.	
	Keywords/Tags: Plotting functions, Taylor series, gradient, divergence,	
	curl, Laplacian operators.	
III	Rigid body mechanics and Deformable bodies	9

Reaccredited 'A+ 'Grade by NAAC(CGPA:3.68/4.00)
College with Potential for Excellence by UGC
DST-FIST Supported & STAR College Scheme by DBT

	1. Rigid body mechanics: Concept of Rigid body, Torque, center of mass,	
	Conservation of linear & angular momentum, Rotatory motion and concept	
	of moment of inertia, Theorems on moment of inertia: theorem of addition,	
	theorem of perpendicular axis, theorem of parallel axis, application of	
	moment of inertia in daily life.	
	2. Deformable bodies: Hook's law, Young's modulus. Bulk modulus,	
	Modulus of rigidity and Poisson's ratio. Relationship between various	
	elastic moduli.	
	Activities:	
	1. Determination of Young's Modulus of a Metallic Bar using the	
	Cantilever method.	
	2. To determine the Modulus of Rigidity of a metallic wire using a torsion	
	pendulum.	
	Keywords/Tags: Rigid body mechanics, torque, Center of mass, moment	
	of inertia theorems, Hooke's law, elastic moduli.	
IV	Surface Tension and Viscosity	9
	1.Surface Tension: Inter-molecular forces and potential energy curve,	
	Force of cohesion and adhesion, Surface tension, Explanation of surface	
	tension on the basis of intermolecular forces, Surface energy, Daily life	
	application of surface tension, Angle of contact, Capillarity.	
	2. Viscosity: Ideal and viscous fluid, Streamline and turbulent flow,	
	Equation of continuity, Bernoulli's theorem (without derivation) and its	
	applications (Velocity of efflux, shapes of wings of airplane, Magnus	
	effect).	
	Activities:	
	1.Determination of surface tension of a liquid by Jaeger's method.	
	2.Study streamline and turbulent flow by visualizing Flow Using Ink.	
	Keywords/Tags: Surface tension, cohesion, adhesion, viscosity. fluid	
	flow, Bernoulli's theorem, Magnus effect.	
V	Mechanical Skil1:	9
	1. Concept of workshop practice, Overview of manufacturing methods:	
	casting, foundry, machining, forming and welding, Types of welding joints	
	and welding defects, Common materials used for manufacturing like steel,	
	copper, iron, metal sheets, composites and alloy, wood.	
	2. Concept of machine processing, Introduction to common machine tools	
	like lathe, shaper, drilling, milling and surface machines, cutting tools,	
	lubricating oils, cutting of a metal sheet using blade, smoothening of cutting	

Reaccredited 'A+ 'Grade by NAAC(CGPA:3.68/4.00)
College with Potential for Excellence by UGC
DST-FIST Supported & STAR College Scheme by DBT

edge of sheet using file, Drilling of holes of different diameter in metal sheet and wooden block, Use of bench vice and tools for fitting.

Activities:

- 1. Show Students various tools (hammer, wrench, saw, files, welding rods, etc.). Let them identify tools, materials (steel, copper, alloys), and their uses.
- 2. Arrange a visit to a workshop or show videos of milling and shaper machines in action.

Keywords/Tags: Workshop practice, welding, materials. machine tools, drilling, fitting.

References

Test/Reference Books:

- 1.Arfken G.B., Weber H.J., Harris F.E., "Mathematical Methods for Physicists", Elsevier, 2013, 7th Edition.
- 2. Spiegel M. R., "Vector Analysis: Schaum Outline Series", McGraw Hill Education, 2017.
- 3. Mathur D. S., "Mechanics", S. Chand, 2012.
- 4. Mathur D. S., "Elements of Properties of Matter", Shyamlal Charitable Trust, New Delhi 2008.
- 5. Sears and Zeemansky, "University Physics: with Modern Physics". 12th Edition. Hugh D. Young, Roger A. Freedman, Albert Lewis Ford, Pearson Education India. 2008.
- 6. Say M.G., "Performance and design of AC machines", ELBS Edn.
- 7. John K.C., "Mechanical workshop practice", PHI Learning Pvt. Ltd, 2010.
- 8. Black B. J., "Workshop Processes, Practices and Materials", Editor Newnes. 2005.
- 9. Smyth Lawrence, Liam Hennessy "New Engineering Technology", The Educational Company of Ireland.
- 10. The Vaiśeşika Sūtra by Rishi Kanada.
- 11. Subash Kak. Kanāda, Great Physicist and Sage of Antiquity
- 12. Śrīmad Bhāgavatam (Bhāgavata Purāņa) Canto 3, Chapter 11" Calculation of Time, from the Atom".
- 13. मध्य प्रदेश हिंदी ग्रंथ अकादमी, भोपाल द्वारा प्रकाशित पुस्तकें।

Reaccredited 'A+ 'Grade by NAAC(CGPA:3.68/4.00)
College with Potential for Excellence by UGC
DST-FIST Supported & STAR College Scheme by DBT

Web Links:

- 1. https://www.eshiksha.mp.gov.in/mpdhe/ Learning Management System, Department of higher education, Government of Madhya Pradesh (M.P.)
- 2. https://nptel.ac.in/courses/115/106/115106090/ Mechanics, Heat, Oscillations and Waves by Prof. V. Balakrishnan, Department of Physics, Indian Institute of Technology, Madras

Evaluation Scheme

External (Theory)

(100 Marks)

Section(A): Very Short Questions Section (B): Short Questions Section (C): Long Questions